Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Exp Eye Res ; 241: 109851, 2024 Apr.
Article En | MEDLINE | ID: mdl-38453039

The accumulation of oleic acid (OA) in the meibum from patients with meibomian gland dysfunction (MGD) suggests that it may contribute to meibomian gland (MG) functional disorder, as it is a potent stimulator of acne-related lipogenesis and inflammation in sebaceous gland. Therefore, we investigate whether OA induces lipogenesis and inflammasome activation in organotypic cultured mouse MG and human meibomian gland epithelial cells (HMGECs). Organotypic cultured mouse MG and HMGECs were exposed to OA or combinations with specific AMPK agonists 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). Lipogenic status, ductal keratinization, squamous metaplasia, NLRP3/ASC/Caspase-1 inflammasome activation, proinflammatory cytokine IL-1ß production, and AMPK pathway phosphorylation in MG were subsequently examined by lipid staining, immunofluorescence staining, immunohistochemical staining, ELISA assay, and Western blot analyses. We found that OA significantly induced lipid accumulation, ductal keratinization, and squamous metaplasia in organotypic cultured MG, as evidenced by increased lipids deposition within acini and duct, upregulated expression of lipogenic proteins (SREBP-1 and HMGCR), and elevation of K10/Sprr1b. Additionally, OA induced NLRP3/ASC/Caspase-1 inflammasome activation, cleavage of Caspase-1, and production of downstream proinflammatory cytokine IL-1ß. The findings of lipogenesis and NLRP3-related proinflammatory response in OA-stimulated HMGECs were consistent with those in organotypic cultured MG. OA exposure downregulated phospho-AMPK in two models, while AICAR treatment alleviated lipogenesis by improving AMPK/ACC phosphorylation and SREBP-1/HMGCR expression. Furthermore, AMPK amelioration inhibited activation of the NLRP3/ASC/Caspase-1 axis and secretion of IL-1ß, thereby relieving the OA-induced proinflammatory response. These results demonstrated that OA induced lipogenic disorder and NLRP3 inflammasome activation in organotypic cultured mouse MG and HMGECs by suppressing the AMPK signaling pathway, indicating OA may play an etiological role in MGD.


Carcinoma, Squamous Cell , Inflammasomes , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Oleic Acid/pharmacology , Oleic Acid/metabolism , Meibomian Glands/metabolism , AMP-Activated Protein Kinases/metabolism , Lipogenesis , Epithelial Cells/metabolism , Caspase 1/metabolism , Cytokines/metabolism , Metaplasia/metabolism , Carcinoma, Squamous Cell/metabolism , Interleukin-1beta/metabolism
2.
Invest Ophthalmol Vis Sci ; 65(2): 8, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38315493

Purpose: The meibomian gland (MG), as the largest modified sebaceous gland, is potentially damaged by urban particulate matter (UPM) based on epidemiological evidence, but the specific experimental mechanisms remain unknown. This study investigated the effects of UPM on MG dysfunction (MGD) in rodent models. Methods: Female C57BL/6J mice received eye drops containing UPM suspension or PBS for 14 days. The proliferative capacity and progenitor of MG were evaluated by immunofluorescence. Cell apoptosis was confirmed by TUNEL assay, along with the analysis of caspase family expression. Lipid accumulation was visualized by Oil Red O staining and LipidTox staining. Ductal hyperkeratinization, neutrophil infiltration, and pyroptosis activation were detected through immunostaining. The relative gene expression and signaling pathway activation were determined by Western blot analysis. Results: Administration of UPM caused MGD-like clinical signs, manifested as distinct corneal epithelial erosion, increased MG orifice occlusion, and glandular dropout. UPM exposure significantly induced progenitor loss, cellular apoptosis, and lipogenic disorder in MG, by reducing P63/Lrig1 expression and increasing cleaved caspase-8, -9, and -3 and meibum lipogenic protein (HMGCR/SREBP-1) expression. UPM-treated mice exhibited ductal hyperkeratinization and neutrophil recruitment. Simultaneously, pyroptosis was motivated, as indicated by the heightened expression of NLRP3 and the cleavage of caspase-1 and -4 and gasdermin D, as well as the increase in IL-1ß and IL-18 downstream. The underlying pathological mechanisms of UPM involve the phosphorylation of mitogen-activated protein kinase and nuclear factor-κB. Conclusions: These results provided direct evidence for the toxicity of UPM in MG. UPM-induced activation of pyroptosis and mitogen-activated protein kinase/nuclear factor-κB signaling pathway might account for the inflammatory MGD.


Meibomian Gland Dysfunction , Female , Mice , Animals , Particulate Matter/toxicity , NF-kappa B/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mitogen-Activated Protein Kinases , Caspases
3.
Invest Ophthalmol Vis Sci ; 64(10): 13, 2023 Jul 03.
Article En | MEDLINE | ID: mdl-37440262

Purpose: Orbital glands and drainage conduits are two distinct entities that constitute the lacrimal apparatus system, the malfunction of which leads to a range of ocular surface disorders. Despite the close functional relationship, how the two parts interact under pathophysiological conditions has not been directly tested. The study aims to investigate the lacrimal gland (LG) structural and functional changes upon the drainage system obstruction, thus, testing their function link. Methods: Dacryocystectomy was performed in C57BL/6 mice to create a surgical model for tear duct (TD) obstruction (STDOB). Prickle1 mutant line with congenital nasolacrimal duct dysplasia serves as a genetic model for TD obstruction (GTDOB). Alterations of the LG and the ocular surface in tear duct obstruction mice were examined. Results: STDOB and GTDOB mice showed similar ocular surface phenotypes, including epiphora, corneal epithelial defects, and conjunctival goblet cell abnormalities. At the molecular and cellular levels, aberrant secretory vesicle fusion of the LG acinar cells was observed with altered expression and localization of Rab3d, Vamp8, and Snap23, which function in membrane fusion. LG secretion was also altered in that lactoferrin, lipocalin2, and lysozyme expression were increased in both LG and tears. Furthermore, STDOB and GTDOB mice exhibited similar LG transcription profiles. Conclusions: Physical obstruction of tear drainage in STDOB or GTDOB mice leads to LG dysfunction, suggesting a long-distance interaction between the tear drainage conduits and the LG. We propose that various components of the lacrimal apparatus should be considered an integral unit in diagnosing and treating ocular surface diseases.


Lacrimal Apparatus Diseases , Lacrimal Apparatus , Nasolacrimal Duct , Mice , Animals , Lacrimal Apparatus/metabolism , Mice, Inbred C57BL , Tears/metabolism , Lacrimal Apparatus Diseases/metabolism , Nasolacrimal Duct/metabolism , Adaptor Proteins, Signal Transducing/metabolism , LIM Domain Proteins
...